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Plasma based Acceleration
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The key is the super high accelerating gradient!

E, = \/np[cm"3]V/cm

T.Tajima and J.M. Dawson PRL (1979) LWFA
P.Chen, J.M. Dawson et.al. PRL (1983) PWFA




Energy doubling of 42GeV SLAC beam in Less

than one meter!
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* Most part of the 42GeV beam is
nearly stopped in less than one meter

e The tail of the beam in the
accelerating phase gains more than
42GeV energy

*A gradient ~ 50 GeV/m is sustained
over meter scale




Plasma Afterburner (energy doubler)
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Concept for a Plasma Wakefield Accelerator Based

Linear Collider (Staging)
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Proton Driven PWFA
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A 3D Nonlinear Regime (the Blowout Regime)

* Linear focusing for
electrons

* Flat accelerating fields
*No dephasing
* No diffraction, but...

* Head erosion

* Hosing

* Transformer Ratio:

Ayload <E+.L=E+
Rosenzweig et al., 1990, Lu et al., 2006 _ .
)/driver E— L E—




Pump depletion and Transformer ratio
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Linear theory : For a symmetric bunch R <2




Dephasing
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For example, for proton of energy around 1TeV, dephasing could be an issue

Not a problem for high energy lepton drivers,
but could be significant for hadron drivers




Differences between negatively and positively charged drivers

QEP-AZ_0000
Teme= 00O[1/m |

* Non-uniform focusing force (r,z)
« Smaller accelerating force

* “Uniform” focusing force (r,z)

Ref. S. Lee et al., Phys. Rev. E (2000); M. Zhou, PhD Thesis (2008)




Advantages and Challenges of Using

Major Advantages:
*TeV class drivers (LHC/Tevatron) are available!

Major Challenge:

e Compressing anti-proton/proton bunch to sub-ps level

Special physics issues for hadron driven PWFA:

* Energy spread induced driver spreading
Beam head erosion due to diffraction
*Dephasing due to lower gamma_b drivers




Anti-Proton is Better!

Wakes produced by anti-proton is just like wakes produced by electrons,
it is in general better than wakes produced by positively charged beams!
An example:
Plasma and Beams density
Anti-Proton driver (sigma_z~ 40um, Time = 1000.00 [ 1/ e, ] 5 5
N~10~11/bunch, sigma_r~10um, normalized . WA
emittance~10um): . El -2
1. Higher plasma density (n_p~10*16cm-3) * ~ El A B
o —
J 8 8
2. Shorter plasma source (~50-100m) due to @ T AT
larger gradient (10-20GeV/m) 15 10 5 0 5 10 15 10 1o
Field E,
3. Higher tolerance on energy spread of the : S E
driver (<50%) 1 3 -
4. Dephasing issue is less severe . ? : :
5. External guiding may not be needed e &
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Modeling tools: Quasi-static QuickPIC

QuickPIC

Massivelly Parallel, 3D Quasi-static particle-in-cell code
Ponderomotive guiding center for laser driver
100-1000+ savings with high fidelity

Field ionization and radiation reaction included
Simplified version used for e-cloud modeling
Developed by the UCLA+UMaryland+IST

New Features

Particle tracking
Parallel scaling to 1,000+

processors
Enhanced Pipelining algorithm
Chengkun Huang: enabling scaling to 16,000+
huangck@ee.ucla.edu processors and unprecedented
htip.//exodus.physics.ucla.edu/ simulation resolution down to nm

http:/efp.ist. utl. pt'golp/epd]




Preliminary

Plasma and Beams density
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Hadron (Proton/Anti-Proton) driven PWFA is an interesting approach for
achieving single stage TeV high quality electron acceleration: driver exists
minus the pulse compression.

Compared to lepton drivers, additional issues need to be considered:
dephasing, pulse broadening, and head erosion due to diffraction.

Full scale modeling is essential for evaluating the full potential of this idea
and QuickPIC is an ideal tool.

Anti-proton drivers would be better than proton drivers.




Discussions

What kind of beam density modulation can be obtained at Tevatron?

e Is it possible and how challenging to compress the ns long beam down to ps
range?

e Is it possible to demonstrate GeV level energy modulation by using a meter
long plasma?




